movement, monitoring severe respiratory infection activity, and monitoring ill and exposed healthcare workers. Seasonal influenza vaccination of healthcare workers who may treat patients with suspected avian influenza A virus infection decreases the opportunity for influenza A viral coinfections and potential for reassortment. # What Makes Avian Influenza A Virus Infections Different From Seasonal Influenza A and B Viruses? Human seasonal influenza Type A (subtypes H1 and H3) and B viruses circulate year-round among people worldwide and cause epidemics every year, often peaking between December and February in the United States. With ongoing virus circulation, most individuals have some immunity from exposures to seasonal influenza A and B viruses from previous years or from seasonal influenza vaccination. However, some populations – including children younger than 5 years old, people 65 years and older, pregnant women, and those with certain chronic health conditions – are at increased risk for serious illness, possibly leading to hospitalization or death. In contrast, avian influenza A virus infection in humans is rare. Even healthy individuals could be at risk for serious illness, depending on the avian influenza A virus and underlying health conditions. While groups at-risk for seasonal influenza complications and death may also be at higher risk of severe illness from infection with avian influenza A viruses, the specific characteristics of the virus and its effects on the immune system may result in disproportionate effects on specific patient groups. Seasonal influenza vaccines protect against selected human seasonal influenza viruses and are not intended to prevent infection with avian influenza A viruses. The CDC, WHO, and other health agencies develop candidate vaccine viruses for avian influenza A viruses of public health concern that may be used by manufacturers to produce prepandemic vaccines and are an essential component of pandemic preparedness. Should an avian influenza A virus acquire the transmissibility and pathogenicity characteristics required for causing a pandemic, health systems and other institutions could become strained if not overwhelmed if a pandemic occurs. ## Is Influenza in Animals Other than Birds a Concern for Humans? A variety of animals – including pigs, cats, whales, horses, and seals – can become infected with avian influenza A viruses. Zoonotic pathogens are those that can be transmitted between animals and humans, including avian and swine influenza A viruses. Canine and bat influenza A viruses have been found in dogs and bats respectively, but are not known to have infected humans. Three influenza A virus subtypes currently circulate in pigs. These viruses do not normally infect humans; however, sporadic human infections with influenza A viruses that normally infect swine have occurred. When this happens, these viruses are called "variant viruses." Pigs are of particular interest because of their susceptibility to their endemic influenza A viruses as well as human seasonal and avian influenza A viruses, and they potentially may be infected with influenza A viruses from different species (e.g., ducks and humans) at the same time. If this happens, it is possible for the genes of these viruses to mix and create a new virus. This type of major change in the influenza A viruses that results in human infection is known as antigenic shift. If this new virus causes illness in people and can be transmitted easily from person-to-person, an influenza pandemic can occur. The U.S. Department of Agriculture runs a voluntary surveillance program that tests samples from sick pigs or pigs that may be associated with human infections to detect changes in influenza A viruses. Per CDC, a total of 20 variant virus infections have been reported in the United States during 2017. Eighteen of these were H3N2v viruses (Texas [1], North Dakota [1], Pennsylvania [1], and Ohio [15]) and two were H1N2v viruses (Ohio [2]). Two of the 20 infected persons were hospitalized as a result of their illness. No deaths have occurred. All variant virus infections have been associated with swine exposure in fair settings and no human-to-human transmission has been identified. (Updated October 6, 2017) ## How is the Risk of an Influenza Pandemic Assessed? The Influenza Risk Assessment Tool (IRAT) is an evaluation tool developed by CDC and external influenza experts that assesses the potential pandemic risk posed by influenza A viruses that currently circulate in animals but not in humans. The IRAT assesses potential pandemic risk based on two different scenarios: "emergence" and "public health impact." "Emergence" refers to the risk of a novel (i.e., new in humans) influenza virus acquiring the ability to spread easily and efficiently in people. "Public health impact" refers to the potential severity of human disease caused by the virus (e.g., deaths and hospitalizations) as well as the burden on society (e.g., missed workdays, strain on hospital capacity and resources, and interruption of basic public services) if a novel influenza virus were to begin spreading efficiently and sustainably among people. The IRAT used 10 scientific criteria to measure the potential pandemic risk associated with each of these scenarios. These 10 criteria can be grouped into three overarching categories: "properties of the virus," "attributes of the population," and "ecology and epidemiology of the virus." Fourteen novel influenza A viruses have been assessed and classified according to low, moderate, and high risk. The IRAT is intended to assess the pandemic potential of an influenza A virus; it cannot predict an influenza pandemic. (Updated October 6, 2017) # What are the Psychological Aspects of Avian Influenza and How Can They be Addressed? While there is no ongoing community spread of avian influenza among humans anywhere in the world, the reporting of sporadic human cases or speculation on the possible emergence of an influenza pandemic may cause concern among the public. Community members often experience heightened anxiety and concern for their health and safety when they see or hear reports of an outbreak on television, online, or on the radio. Healthcare workers also experience higher levels of stress during outbreaks and, as caregivers, may be at greater risk of infection without proper infection prevention and control practices. In past outbreaks, this has resulted in increased absenteeism and, in some cases, stigma toward those who are in contact with patients and loved ones who are ill. In addition, grief and loss reactions of survivors of those who perish during an outbreak or pandemic may require intervention. Because a significant stress component exists during any infectious disease outbreak, planners should integrate psychological support and education into their preparedness efforts and in all aspects of a response – should a pandemic emerge – to prevent or manage adverse psychological effects. ## **Key Points for Consideration and Resources by Profession** # **Clinicians/Healthcare Providers** ## **Preparedness** - Maintain awareness of avian influenza A virus infections in humans by signing up for public health alerts from local health department and CDC. - Be prepared to institute additional outpatient and emergency department-based screening if larger outbreaks occur or human-to-human transmission chains are identified. - Resources: - o Avian Influenza: Information for Health Professionals and Laboratorians. [CDC] - o Protect Yourself: Avian Flu Quick Card for Healthcare Workers. [OSHA] ## **Patient Evaluation** - Ask symptomatic patients about recent travel to areas where avian influenza A outbreaks are occurring and assess for domestic occupational exposure. - Immediately place a simple mask on patients with suspected exposure and symptoms. - Consider placing patients suspected of being infected with an avian influenza A virus that has caused or is related to viruses that have caused severe human illness in an airborne infection isolation room (AIIR), if available. - Rapidly involve infectious disease and infection control personnel at your facility for a suspect case. - Resources: - o Interim Guidance on Case Definitions for Investigations of Human Infection with Avian Influenza A (H7N9) Virus in the United States. [CDC] - o Interim Guidance on Case Definitions for Investigations of Human Infection with Highly Pathogenic Avian Influenza A (H5N1) Virus in the United States. [CDC] - o Interim Guidance on Case Definitions for Investigations of Human Infection with Highly Pathogenic Avian Influenza A H5 Viruses in the United States. [CDC] - Brief Summary for Clinicians: Evaluating and Managing Patients Exposed to Birds Infected with Avian Influenza Viruses of Public Health Concern. [CDC] (Updated October 6, 2017) ## **Patient Testing and Diagnosis** - Test symptomatic patients who have possible exposure to avian influenza A viruses when they have traveled to an area with an ongoing outbreak or through domestic occupational exposure. - Ensure proper sample collection and specimen submission to the jurisdictional public health laboratory. - Resources: - o Diagnostics for Detecting H7N9 Using rRT-PCR. [CDC] - o Interim Guidance for Specimen Collection, Processing, and Testing for Patients with Suspected Infection with Novel Influenza A Viruses Associated with Severe Disease in Humans. [CDC] (Note: This guidance applies to Asian lineage A(H5N1) and A(H7N9) HPAI viruses that have caused severe illness in humans in other countries.) - o Interim Guidance for Specimen Collection, Processing, and Testing for Patients with Suspected Infection with Novel Influenza A Viruses with the Potential to Cause Severe Disease in Humans. [CDC] (Note: This guidance applies to A(H5) HPAI viruses that have been found in birds in the US.) - Influenza Specimen Collection Desk Reference Guide. [CDC] (Updated July 14, 2017) - o Interim Risk Assessment and Biosafety Level Recommendations for Working with Influenza A(H7N9) Viruses. [CDC] - Laboratory Biorisk Management for Laboratories Handling Human Specimens Suspected or Confirmed to Contain Avian Influenza A(H7N9) Virus Causing Human Disease: Interim Recommendations. [WHO] #### **Patient Treatment and Response** - Treat symptomatic patients with a history of exposure to avian influenza A virus with neuraminidase inhibitor antivirals as soon as possible; do not delay while waiting for confirmatory laboratory results. - Treat symptoms and provide supportive care. - Follow recommended infection prevention and control procedures for suspected or confirmed avian influenza A virus infection including appropriate use of respirators (e.g., fit-tested N95 respirators). - Rapidly involve infectious disease and infection control personnel at your facility for a suspect case. - Resources: - o Interim Guidance for Infection Control Within Healthcare Settings When Caring for Confirmed Cases, Probable Cases, and Cases Under Investigation for Infection with Novel Influenza A Viruses Associated with Severe Disease. [CDC] - Interim Guidance on the Use of Antiviral Medications for Treatment of Human Infections with Novel Influenza A Viruses Associated with Severe Human Disease. [CDC] - o Interim Guidance on Follow-up of Close Contacts of Persons Infected with Novel Influenza A Viruses Associated with Severe Human Disease and on the Use of Antiviral Medications for Chemoprophylaxis. [CDC] - o Influenza Antiviral Medications: Summary for Clinicians. [CDC] - o Interim Guidance on Influenza Antiviral Chemoprophylaxis of Persons Exposed to Birds with Avian Influenza A Viruses Associated with Severe Human Disease or with the Potential to Cause Severe Human Disease. [CDC] - Avian Influenza A(H7N9) Virus: Post-exposure Antiviral Chemoprophylaxis of Close Contacts of a Patient with Confirmed H7N9 Virus Infection and/or High Risk Poultry/Environmental Exposures. [WHO] # **Emergency Management/ Public Health Preparedness/ Healthcare System Emergency Management Professionals** #### **Current Cases** No human cases of Asian lineage A(H7N9) or A(H5) virus infection have been detected in the United States. #### **General Preparedness and Response** - Review and revise existing pandemic influenza plans, or develop plans, if needed. - Ensure clinicians are provided up to date information on testing criteria and evaluation of suspected human cases and treatment of avian influenza A virus infection. - Coordinate planning across healthcare coalitions to improve regional information sharing, surveillance, and reporting and to develop consistent healthcare facility infection control and laboratory specimen submission information and, if an outbreak occurs, to develop common visitation rules, access to medical countermeasures, and institute measures such as crisis standards of care, if warranted. - Resources: - o Epidemic/Pandemic Flu Topic Collection. [ASPR TRACIE] - o Top 10 Influenza Pandemic Response Planning Tips for H7N9 Virus. [CDC] - o Influenza Risk Assessment Tool. [CDC] - o Tool for Influenza Pandemic Risk Assessment. [WHO] - o Genetic Evolution of H7N9 Virus in China, 2013. [CDC] - o Factsheet on A(H5N1). [ECDPC] (Updated October 6, 2017) - o Factsheet on A(H7N9). [ECDPC] (Updated October 6, 2017) - Community Mitigation Guidelines to Prevent Pandemic Influenza United States, 2017. [CDC] - o Analysis of Gaps and Needs for the PIP PC Implementation. [WHO] - Avian Influenza: USDA Has Taken Actions to Reduce Risks but Needs a Plan to Evaluate Its Efforts. [GAO] #### **Risk Communication** - Communicate protective information to populations at risk of exposure to avian influenza A viruses. - Individuals with Occupational or Recreational Exposure to Birds: - o Maintain awareness of avian influenza A virus outbreaks in poultry or wild birds. - Avoid direct contact with potentially infected birds or contaminated surfaces. - o Know the signs of avian influenza in birds. - Wear appropriate personal protective equipment. - Report suspected avian influenza A infections in wild birds, poultry, humans, or other animals. - Travelers to Areas of Potential Risk: - Monitor the CDC Travelers' Health webpage for changes in travel guidance. As of March 7, the CDC's current alert level for Asian lineage H7N9 virus in China is Watch – Level 1, which means that travelers should practice usual precautions. - o Avoid contact with birds or areas they may have contaminated. - o Properly handle and cook poultry products. ## • Resources: - o Avian Flu Fact Sheet. [OSHA] - Summary of Key Information Practical to Countries Experiencing Outbreaks of A(H5N1) and Other Subtypes of Avian Influenza. [WHO] - o Ensuring the Protection of Employees Involved in Highly Pathogenic Avian Influenza Control and Eradication Activities. [APHIS] - o Avian Influenza Protecting Poultry Workers at Risk. [OSHA] - CDC Interim Guidance for Landfill Workers in the United States Disposing of Poultry Carcasses During Outbreaks of Highly Pathogenic Avian Influenza. [CDC] - o Guidance for Protecting Employees Against Avian Flu. [OSHA] - FY2016 HPAI Response: Initial Recommendations on PPE for Selected Activities. [USDA] - o How Infected Backyard Poultry Could Spread Bird Flu to People. [CDC] - Guidance for Hunters Protect Yourself and Your Birds from Avian Influenza. [APHIS] - o Protect Your Birds from Avian Influenza. [APHIS] - o Biosecurity for Birds. [APHIS] (Updated July 14, 2017) - o Influenza in Cats. [CDC] - o 2016 H5 HPAI around the World. [USDA] - o Avian Flu (H7N9) in China. [CDC] #### **Behavioral Health** - Integrate psychological support and education into all elements of preparedness and response. - Maintain awareness of media reporting and social media rumors that may raise concerns among the public. - Building Workforce Resilience Through the Practice of Psychological First Aid. [ASPR] - o Coping with Stress During Infectious Disease Outbreaks. [SAMHSA] - o Talking with Children: Tips for Caregivers, Parents, and Teachers During Infectious Disease Outbreaks. [SAMHSA] - o Taking Care of Your Behavioral Health: Tips for Social Distancing, Quarantine, and Isolation During an Infectious Disease Outbreak. [SAMHSA] - o How to Cope with Sheltering in Place. [SAMHSA] ## **Administrative Preparedness** - Review emergency authorities and statutes to understand what relief resources may be available in the event of an emergency. - Understand isolation and quarantine powers in your state relevant to animals and humans and the role emergency management may have in such situations. Federal isolation and quarantine are also authorized for influenza viruses that can cause a pandemic. - Resources: - o Regulations and Laws That May Apply During a Pandemic. [CDC] - o 42 USC 264-272-Quarantine and Inspection. [GPO] - o 42 CFR Parts 70 and 71-Control of Communicable Diseases. [Federal Register] ## Recovery Use the HHS Response and Recovery Resources Compendium to search the repository of HHS products, services, and capabilities available to state, tribal, territorial, and local agencies before, during, and after public health and medical incidents. ## **National and International Plans and Resources** - Pandemic Influenza Plan: 2017 Update. (Updated July 14, 2017) - National Strategy for Pandemic Influenza. - North American Plan for Animal and Pandemic Influenza. - WHO Pandemic Influenza Preparedness and Response Guidance Document. - International Health Regulations. - APHIS Highly Pathogenic Avian Influenza Response Plan The Red Book. Contributors and reviewers of this document include Joseph Annelli, DVM, MS, USDA APHIS; Erin Burns, MA, Centers for Disease Control and Prevention; Guillermo Aviles-Mendoza, JD, ASPR Office of Emergency Management; Elena Behnke, DVM, USDA APHIS; Denise Brinson, DVM, MAM, USDA APHIS; Lyndsay Cole, USDA APHIS; Patricia Fox, DVM, MPH, USDA APHIS; John Hick, MD, ASPR and Hennepin County Medical Center; Dan Hanfling, MD, ASPR, Johns Hopkins Center for Health Security, George Washington University, and George Mason University School of Public Policy; Rick Hunt, MD, ASPR National Healthcare Preparedness Programs; Rachel Kaul, LCSW, CTS, ASPR Office of Policy and Planning; Terri Postma, MD, Centers for Medicare and Medicaid Services; Connie Price, MD, Denver Health and Hospital; Lewis Rubinson, MD, PhD, University of Maryland School of Medicine and University of Maryland Medical Center/R Adams Cowley Shock Trauma Center; Mary Russell, EdD, MSN, Boca Raton Regional Hospital; Jerome Tokars, MD, MPH, Centers for Disease Control and Prevention; and Mia Kim Torchetti, DVM, MS, PhD, USDA APHIS. # **Appendix A: ASPR Resources** PHE.Gov serves as the key one-stop website for all federal public health and medical information sources and assets. The site is searchable for multiple resources. http://www.phe.gov The Technical Resources, Assistance Center, and Information Exchange (TRACIE) is a healthcare emergency information gateway that provides timely access to resources and promising practices, identifies and remedies knowledge gaps, and connects users with responses to a range of requests for technical assistance. https://asprtracie.hhs.gov/ The HHS Response and Recovery Resources Compendium is an easy to navigate, comprehensive, web-based repository of HHS resources and capabilities available to federal, state, local, territorial and tribal stakeholders before, during, and after public health and medical incidents. http://www.phe.gov/emergency/hhscapabilities/Pages/default.aspx # **Appendix B: Full References with Annotations** Animal and Plant Health Inspection Service. (n.d.). Highly Pathogenic Avian Influenza Webpage. This webpage maintained by the U.S. Department of Agriculture's Animal and Plant Health Inspection Service features numerous avian influenza resources, including APHIS's response plan and goals, reference guides and standard operating procedures, and an HPAI web mapping tool showing locations of poultry farms, flyways, and other planning information. The page also includes response and policy information on topics including initial response; finance and administration; surveillance and diagnostics; quarantine, movement control, and continuity of business; disposal and cleaning/disinfection; recovery and restocking; and health and safety. Centers for Disease Control and Prevention. (n.d.). Information on Avian Influenza. This webpage collects information on current and historic avian flu situations, specific information on infections in birds and humans, and healthcare and laboratory guidance. The CDC continues to update content as more is learned about H7N9. de Vries, R., Peng, W., Grant, O., et al. (2017). Three Mutations Switch H7N9 Influenza to Human-Type Receptor Specificity. PLOS Pathogens. 13(6):e1006390. (Included July 14, 2017) The authors conducted mutation analyses to determine whether H7N9 is capable of acquiring human-type receptor specificity, which could enable effective transmission of the virus from human to human. They found that three amino acid mutations were needed to change specificity to human-type receptors. European Centre for Disease Prevention and Control. (2017). Rapid Risk Assessment: Genetic Evolution of Influenza A(H7N9) Virus in China – Implications for Public Health, Sixth Update, 9 March 2017. This document summarizes epidemiological and virological information on animal and human infections with H7N9 viruses and updates the risk assessment of the virus to public health. Food and Agriculture Organization of the United Nations. (2017). H7N9 Situation Update. The webpage, updated on a weekly basis, provides an overview of the current H7N9 situation, including updates on cases and deaths in humans and other animals and maps and graphs depicting the epidemiological situation and geographic reach. Food and Agriculture Organization of the United Nations. (2008). Biosecurity for Highly Pathogenic Avian Influenza – Issues and Options. This paper examines the state of knowledge of biosecurity in relation to highly pathogenic avian influenza H5N1 and presents issues and options for the domestic poultry and captive bird sectors. Fournie, G., Hog, E., Barnett, T., et al. (2017). A Systematic Review and Meta-Analysis of Practices Exposing Humans to Avian Influenza Viruses, Their Prevalence, and Rationale. The American Journal of Tropical Medicine and Hygiene. (Included July 14, 2017) The authors conducted a systematic literature review to identify practices associated with human infections of avian influenza, their prevalence, and rationale. They found that both direct and indirect exposure to poultry were associated with infection with all virus subtypes and all settings and that association with infection was stronger in markets than households, for sick and dead than healthy poultry, and for H7N9 than H5N1. Huo, X., Chen, L., Qi, X., et al. (2017). Significantly Elevated Number of Human Infections with H7N9 Virus in Jiangsu in Eastern China, October 2016 to January 2017. Eurosurveillance. 22(13). The authors conducted statistical analysis of human and environmental surveillance data, meteorological factors, and phylogenetic analysis on human cases of H7N9 virus infection between October 2016 and January 2017 in Jiangsu, China. Jiangsu is one of the most affected of the seven Chinese provinces that have seen human cases, and the number of human cases in Jiangsu during the ongoing fifth wave of the outbreak exceeds the combined total cases from the first four seasons. Despite greater treatment experience and a shorter interval between illness onset and use of antivirals, the authors observed an acceleration in disease progression with median time interval from onset of disease to intensive care unit admission dropping from 10 days in the first wave and 9 days in the second wave to 7 days in the last three waves and a median time interval from onset of disease to death in the fifth wave dropping to 13.5 days in comparison to a range of 15 to 28 days in previous waves. The number of human cases increased in December. The authors noted that the number of days in December with high risk ambient temperatures was also elevated, suggesting the need for further research. The environmental H7N9 detection rate was also elevated in December and the authors suggested that closures of live poultry markets may have contributed to a drop in cases in January. Other patient characteristics, exposure history to poultry or live poultry markets, and proportion of severe infections and deaths were similar in the fifth wave to previous waves. Infectious Diseases Society of America. (2017). Animal Influenza Viruses of Zoonotic Concern. The Journal of Infectious Diseases. 216(suppl_4). (Abstracts only.) Included October 6, 2017. The supplement contains a number of articles on avian and other animal influenza viruses of concern to humans. Iuliano, A., Jang, Y., Jones, J., et al. (2017). Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic – China, October 2016-February 2017. Morbidity and Mortality Weekly Report. 66(9):254-255. This report notes an increase in human infections during the current season, though clinical characteristics and risk factors do not appear to have changed. The two distinct genetic lineages of the virus are showing indications of differences in cross-reactivity with existing candidate vaccine viruses and antiviral medications. Jiang, H., Wu, P., Uyeki, T., et al. (2017). Preliminary Epidemiologic Assessment of Human Infections with Highly Pathogenic Avian Influenza A(H5N6) Virus, China. Clinical Infectious Diseases. The authors analyzed data on laboratory-confirmed Asian lineage HPAI H5N1, H5N6, and H7N9 and found that epidemiologic characteristics and severity of infections of A(H5N6) were similar to those of A(H5N1) and more severe than A(H7N9). Kile, J., Ren, R., Liu, L., et al. (2017). Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic – China, October 1, 2016-August 7, 2017. Morbidity and Mortality Weekly Report. 66(35):928-932. (Included October 6, 2017) This updated report reinforces previous findings of an increase in human infections of Asian lineage A(H7N9) during the fifth season, noting that human infections were reported in more Chinese provinces, regions, and municipalities than in the four previous seasons combined. The authors discuss the emergence of an HPAI mutation, the development of candidate vaccine viruses, and the isolation of two distinct lineages: the Pearl River Delta lineage and the Yangtze River Delta lineage, with the Yangtze River Delta lineage predominating. Lai, S., Qin, Y., Cowling, B., et al. (2016). Global Epidemiology of Avian Influenza A H5N1 Virus Infection in Humans, 1997-2015: A Systematic Review of Individual Case Data. The Lancet Infectious Diseases. 16(7):e108-e118. (abstract only) This study examined 907 human cases of avian influenza A H5N1 from May 1997 to April 2015 to describe changes in global epidemiology. The authors describe an expansion in the number of affected countries from east and southeast Asia west through Asia to Africa. The authors noted a recent increase in cases in Egypt, but found no significant differences in comparison to earlier cases in epidemiological factors such as fatality risk, history of patient contact or exposure to poultry, and time from illness onset to hospital admission. The Center for Food Security and Public Health and Institute for International Cooperation in Animal Biologics, Iowa State University. (2015). Avian Influenza. This technical disease card provides detailed information on avian flu, including its etiology, species affected, geographic distribution, infection information in animals and humans, and extensive references. World Health Organization. (2017). Analysis of Recent Scientific Information on Avian Influenza A (H7N9) Virus. This analysis from February 10 provides currently known information on H7N9 geographic distribution in animals, cases of human infection, population immunity, disease severity, virology, antiviral susceptibility, and transmission models. World Health Organization. (2017). Antigenic and Genetic Characteristics of Zoonotic Influenza Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. This report summarizes antigenic and genetic characteristics of circulating zoonotic influenza viruses and their relevance to current candidate vaccine viruses. World Organisation for Animal Health. (n.d.). Avian Influenza Portal. This web page provides the latest updates on avian influenza and its possible effects on humans. Xiang, N., Li, X., Ren, R., et al. (2016). Assessing Change in Avian Influenza A(H7N9) Virus Infections During the Fourth Epidemic – China, September 2015-August 2016. Morbidity and Mortality Weekly Report. 65(49):1390-1394. The authors compared epidemiology and virology data from the fourth wave of human cases of avian influenza A H7N9 in China to the preceding waves. The fourth wave had a longer duration, greater geographic spread, a higher proportion of cases in rural areas, and higher percentage patients requiring admission to intensive care. However, the case fatality rate remained at approximately 40% and the authors found no evidence of sustained human to human transmission or increased transmissibility to humans from poultry or environmental exposures. Zhou, L., Tan, Y., Kang, M., et al. (2017). Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017. Emerging Infectious Diseases. 23(8):1355-1359. (Included October 6, 2017) The authors compared characteristics of eight human infections of highly pathogenic Asian lineage A(H7N9) first identified in 2017 with human infections of low pathogenic Asian lineage A(H7N9) that have been occurring since 2013. They found the HPAI A(H7N9) patients significantly more likely to be hospitalized earlier, live in rural areas, and have exposure to sick or dead poultry. Statistical power to detect other differences in epidemiological characteristics or disease severity was limited by the small sample of HPAI A(H7N9) patients. Zhu, W., Zhou, J., Li, Z., et al. (2017). Biological Characterisation of the Emerged Highly Pathogenic Avian Influenza (HPAI) A(H7N9) Viruses in Humans, in Mainland China, 2016 to 2017. Eurosurveillance. 22(19). The authors examined the genetic sequence of highly pathogenic Asian lineage A(H7N9) sampled from infected humans in comparison with low pathogenic Asian lineage A(H7N9) virus samples. The HPAI virus showed a slightly increased binding preference for receptors in both the upper and lower human airways. The authors also found that the HPAI virus did not react strongly with the antisera of the vaccine strain recommended for LPAI A(H7N9) and that HPAI A(H7N9) with the 292K amino acid substitution in the NA protein, which could be acquired two days following administration of antiviral drugs, exhibited multi-drug resistance.